ASPEN 学习笔记 8 :物性参数估算

ASPEN 学习笔记 8 :物性参数估算

前言

尽管ASPEN提供了足够的物性数据库,大部分情况下可能是够用了,但是谁知道呢,也许一不小心就遇到了某些物性数据缺失的情况,这种情况下就得对物性参数进行估算了。

纯组分的物性参数估算

估算噻唑 C3H3NS 的物性,查得其分子结构 image-20220512232549013,分子量85,正常沸点TB 116.8°C。我们假装不知道它的沸点,采用ASPEN来估算下。

进入Properties,选择Run mode为 Estimation,即估算

在Components的Specification 输入组分id,这里我输入化学式,其实系统能自动识别,说明其中应该是收录了这个物质的,这里不管这么多。

image-20220512235159655

继续,这时发现已经没有未完成的项目提示,直接点Run试一下,可以运行,但是什么都没有。估计是因为没有指定要估算的物性。我们进入Estimation,input,Pure Components,Parameters 选择TB,同时指定组分为C3H3NS,选择估算方法,这里有四种我们都选择上,点击RUN试试看。

image-20220512235651626

报错了

image-20220512235811161

Processing input specifications ...

      STRUCTURE FOR COMPONENT C3H3NS HAS NOT BEEN DEFINED.
      PCES CANNOT USE GROUP-CONTRIBUTION METHODS TO ESTIMATE MISSING PROPERTIES

  **  ERROR IN PHYSICAL PROPERTY SYSTEM
      PROP-NAME TB FOR COMPONENT C3H3NS CANNOT BE ESTIMATED USING
      THE JOBACK METHOD AS SPECIFIED BECAUSE OF MISSING INPUT PARAMETERS:

         STRUCTUR

  **  ERROR IN PHYSICAL PROPERTY SYSTEM
      PROP-NAME TB FOR COMPONENT C3H3NS CANNOT BE ESTIMATED USING
      THE OGATA-TS METHOD AS SPECIFIED BECAUSE OF MISSING INPUT PARAMETERS:

         STRUCTUR

  **  ERROR IN PHYSICAL PROPERTY SYSTEM
      PROP-NAME TB FOR COMPONENT C3H3NS CANNOT BE ESTIMATED USING
      THE GANI METHOD AS SPECIFIED BECAUSE OF MISSING INPUT PARAMETERS:

         STRUCTUR

  **  ERROR IN PHYSICAL PROPERTY SYSTEM
      PROP-NAME TB FOR COMPONENT C3H3NS CANNOT BE ESTIMATED USING
      THE MANI METHOD AS SPECIFIED BECAUSE OF MISSING INPUT PARAMETERS:

         PL-DATA

! Errors while processing input specifications

从报错代码来看,前面三种需要结构数据,最后一种方法需要PL-DATA,这里把MANI方法取消

image-20220513000001123

并进入Components -Molecular Structure 中

点击Calculate Bonds

再来Run一次

image-20220513000107665

仍然报错,最后只选择JOBACK方法,估算得到TB为 387.84K,为114.69°C, 略有差距。

image-20220513000615346

同时可以看到,在估算方法中,还有其他的方法,但是这里好像不适用,打开aspen help,查找boiling point

看到说明如下

Method Information Required
Joback Structure
Ogata-Tsuchida Structure
Gani Structure
Mani PC, Vapor pressure data (also uses TC if available)

进一步查看

Table 3.5 Joback Method Functional Groups

Nonring Increments

Functional Group Group Number
-CH3 100
>CH2 101
>CH- 102
>C< 103
=CH2 104
=CH- 105
=C< 106
=C= 107
≡CH 108
≡C- 109

Ring Increments

Functional Group Group Number
>CH2 110
>CH- 111
>C< 112
=CH- 113
=C< 114

Halogen Increments

Functional Group Group Number
-F- 115
-CL 116
-BR 117
-I 118

Oxygen Increments

Functional Group Group Number
-OH (alcohols) 119
-OH (phenols) 120
-O- (nonring) 121
-O- (ring) 122
>C=O (nonring) 123
>C=O (ring) 124
O=CH- (aldehyde) 125
-COOH (acid) 126
-COO- (ester) 127
=O (except as above) 128

Nitrogen Increments

Functional Group Group Number
-NH2 129
>NH (nonring) 130
>NH (ring) 131
>N- (nonring) 132
-CN 133
-NO2 134
-N= (nonring) 135
-N= (ring) 136
=NH 137

Sulfur Increments

Functional Group Group Number
-SH 138
-S- (nonring) 139
-S- (ring) 140

Table 3.8 Ogata-Tsuchida Method Functional Groups

Refer to the table of Functional Group Abbreviations at the end of this chapter for details on some of the symbols used in this table.

Halogens

Functional Group Group Number Radical, R, showing deviations > 5K
RH 100 Me, t-Bu
RCL 101
RBR 102
RI 103

Alcohols and Ethers

Functional Group Group Number Radical, R, showing deviations > 5K
ROH 104 Me, t-Bu
MeOR 105 Me
EtOR 106
ROR 107 Me, Hep
PhOR 108
RONO2 109

Sulfur Groups

Functional Group Group Number Radical, R, showing deviations > 5K
RSH 110
RSMe 111 Me
RSET 112
RSR 113 Me, Hep

Amines and Nitro Compounds

Functional Group Group Number Radical, R, showing deviations > 5K
RNH2 114
RNHMe 115
RNHEt 116
RNHPr 117
RNMe2 118 Me
RNO2 119 Me, Et

Aldehydes and Ketones

Functional Group Group Number Radical, R, showing deviations > 5K
HCOR 120
MeCOR 121
EtCOR 122

Cyanide

Functional Group Group Number Radical, R, showing deviations > 5K
RCN 123

Acids and Esters

Functional Group Group Number Radical, R, showing deviations > 5K
RCOCL 124
HCOOR 125
MeCOOR 126
EtCOOR 127
PhCOOR 128
RCOOH 129
RCOOMe 130
RCOOEt 131
RCOOPr 132
RCOOPh 133
(RCO)2O 134 Hep
CLCH2COOR 135
CL2CHCOOR 136
BRCH2COOR 137
NCCH2COOR 138
CH2=CHCOOR 139

Radicals

Radical Type Group Number Radical, R, showing deviations > 5K
METHYL 140
ETHYL 141
N-PROPYL 142
ISOPROPYL 143
N-BUTYL 144
SEC-BUTYL 145
ISOBUTYL 146
T-BUTYL 147
N-AMYL 148
ISOAMYL 149
T-AMYL 150
NEOPENTYL 151
N-HEXYL 152
ISOHEXYL 153
N-HEPTYL 154
N-OCTYL 155
VINYL 156
ALLYL 157
2-BUTENYL 158
PHENYL 159

Molecules

Molecule Group Number Radical, R, showing deviations > 5K
ETHANE 160
PROPANE 161
N-BUTANE 162
ISOBUTANE 163
N-PENTANE 164
ISOPENTANE 165
NEOPENTANE 166
N-HEXANE 167
ISOHEXANE 168
N-HEPTANE 169
N-OCTANE 170
ETHYLENE 171
PROPYLENE 172
2-BUTENE 173
BENZENE 174

Table 3.4A Gani Method Functional Groups

Refer to the table of Functional Group Abbreviations at the end of this chapter for details on some of the symbols used in this table.

The First-Order Groups

Nonring Increments

Functional Group Group Number
-CH3 1015
>CH2 1010
>CH- 1005
>C< 1000
-CH=CH2 1070
-CH=CH- 1065
>C=CH2 1060
-CH=C< 1055
>C=C< 1050
CH2=C=CH 4995
-C#CH (alkine) 2655
-C#C (alkine) 2650

Benzene Ring Increments

Functional Group Group Number
-ACH= 1105
>AC= 1100
CH3-AC 1160
-CH2-AC 1155
>CH-AC 1150

Oxygen Increments

Functional Group Group Number
-OH (alcohol) 1200
HO-AC (phenol) 1350
CH3-CO-(C) 1405
-CH2-CO-(C) 1400
O=CH- (aldehyde) 1450
CH3-COO-(C) (ester) 1505
-CH2-COO-(C) (ester) 1500
HCOO-(C) (formate) 1550
CH3-O-(C) (nonring) 1615
-CH2-O-(C) (nonring) 1610
>CH-O-(C) (nonring) 1605
-CH2-O-(C) (ring) 1600
-COOH (acid) 1955
-COO- (ester) 3300
-OC2H3OH- 3605
-O(CH2)2OH 3600

Nitrogen Increments

Functional Group Group Number
-CH2-NH2 1655
>CH-NH2 1650
CH3-NH- 1710
-CH2-NH- 1705
>CH-NH- 1700
CH3-N< 1755
-CH2-N< 1750
NH2-AC (benzene ring) 1800
C5H4N- (pyridine ring) 1855
C5H3N< (pyridine ring) 1850
-CH2-C#N (nitrile) 1900
-CH2-NO2 2255
>CH-NO2 2250
NO2-AC (benzene ring) 2300
-CONH2 3550
-CONHCH3 3555
-CONHCH2- 3560
-CON(CH3)2 3565
-CONCH3CH2- 3570
-CON(CH2)2< 3575
HCON(CH2)2 4996

Halogen Increments

Functional Group Group Number
-CH2-CL 2010
>CH-CL 2005
->C-CL 2000
-CH<CL2 2055
>C-CL2 2050
-CCL3 2100
CL-AC (benzene ring) 2200
-I 2550
-BR 2600
CL-(C=C) 2800
F-AC (benzene ring) 2850
-CF3 2960
>CF2 2955
>C<F 2950
-CCL2F 3505
-HCCLF 3515
-CCLF2 3520
-F (except as above) 3535

Sulfur Increments

Functional Group Group Number
-CH2-SH 2400
CH3S- 3650
-CH2S- 3655
>CHS- 3660
-C4H3S 3755
>C4H2S 3760

Second-Order Groups Corrections

Nonring Corrections

Functional Group Group Number
(CH3)2CH- 5000
(CH3)3C- 5005
-CH(CH3)CH(CH3)- 5010
-CH(CH3)C(CH3)< 5015
-C(CH3)2C(CH3)2- 5020
CH3CH3 5050
>C=C-C=C< 5090
-CH=C-C=C< 5095
CH2=C-C=C 5100
C=CH-C=C 5105
CH=CH-C=C 5110
CH2=CH-C=C 5115
CH=C-C=CH 5120
CH=C-C=CH2 5125
CH2=C-C=CH2 5130
CH2=CH-C=CH2 5135
CH2=CH-C=CH 5140
CH2=CH-CH=CH2 5145
CH3-C=C 5150
CH3-CH=C 5155
CH3-CH=CH 5160
CH3-CH=CH2 5165
CH3-C=CH 5170
CH3-C=CH2 5175
CH2-C=C 5180
CH2-CH=C 5185
CH2-CH=CH 5190
CH2-CH=CH2 5195
CH2-C=CH 5200
CH2-C=CH2 5205
CH-C=C 5210
CH-CH=C 5215
CH-CH=CH 5220
CH-CH=CH2 5225
CH-C=CH 5230
CH-C=CH2 5235
C-C=C 5240
C-CH=C 5245
C-C=CH 5250
C-C=CH2 5255
C-CH=CH 5260
C-CH=CH2 5265
c-C-CMH2:(M>1) 5310

Ring Corrections

Functional Group Group Number
3-Member 5025
4-Member 5030
5-Member 5035
6-Member 5040
7-Member 5045

Oxygen Corrections

Functional Group Group Number
CHCHO 5055
CCHO 5060
CH3COCH2 5065
CH3COCH 5070
CH3COC 5075
c-C=O 5080
ACCHO (benzene ring) 5085
CHCOOH 5270
CCOOH 5275
ACCOOH (benzene ring) 5280
CH3COOCH 5285
CH3COOC<- 5290
COCH2COO- 5295
COCHCOO 5300
COCCOO 5305
CO-O-CO 5315
ACCOO (benzene ring) 5320
CHOH 5325
COH 5330
C(OH)C(OH) 5335
CH(OH)C(OH) 5340
CH2(OH)C(OH) 5345
CH(OH)CH(OH) 5350
CH2(OH)CH(OH) 5355
CH2(OH)CH2(OH) 5360
c-COH 5365
c-CHOH 5370
C-O-C=C 5490
CH-O-C=C 5495
CH2-O-C=C 5500
C-O-CH=C 5505
C-O-C=CH 5510
C-O-C=CH2 5515
CH-O-CH=CH 5520
CH-O-CH=CH2 5525
CH-O-C=CH 5530
CH-O-C=CH2 5535
CH2-O-C=C 5540
CH2-O-CH=C 5545
CH2-O-CH=CH 5550
CH2-O-CH=CH2 5555
AC-O-C (benzene ring) 5560
AC-O-CH (benzene ring) 5565
AC-O-CH2 (benzene ring) 5570
AC-O-CH3 (benzene ring) 5575

Nitrogen Corrections

Functional Group Group Number
C(OH)CN 5375
CH(OH)-CN 5380
CH(OH)-CNH 5385
CH2(OH)-CN 5390
CH(OH)-CNH 5395
CH(OH)-CNH2 5400
CH2(OH)-CNH 5405
CH2(OH)-CHNH2 5410
CH(OH)-CHNH 5415
CH(OH)-CH2NH2 5420
CH2(OH)-CHNH 5425
CH2(OH)-CH2NH2 5430
C(NH2)-C(NH2) 5435
CH(NH2)-C(NH2) 5440
CH2(NH2)-C(NH2) 5445
CH(NH2)-CH(NH2) 5450
CH(NH2)-CH2(NH2) 5455
CH2(NH2)-CH2(NH2) 5460
c-C-N-c-C 5465
c-CH-N-c-C 5470
c-CH-N-c-CH 5475
c-CH-NH-c-C 5480
c-CH-NH-c-CH 5485
C(NH2)-COOH 5705
CH(NH2)-COOH 5710
CH2(NH2)-COOH 5715

Sulfur Corrections

Functional Group Group Number
c-C-S-c-C 5580
c-CH-S-c-C 5585
c-CH2-S-c-C 5590
c-CH2-S-c-CH 5595
c-CH2-S-c-CH2 5600

Halogen Corrections

Functional Group Group Number
C=CF 5605
CH=CF 5610
CH2=CF 5615
C=CHF 5620
CH=CHF 5625
CH2=CHF 5630
C=CBr 5635
CH=CBr 5640
CH2=CBr 5645
C=CHBr 5650
CH=CHBr 5655
CH2=CHBr 5660
C=CI 5665
CH=CI 5670
CH2=CI 5675
C=CHI 5680
CH=CHI 5685
CH2=CHI 5690
ACBr (benzene ring) 5695
ACI (benzene ring) 5700

Mani Method

The Mani method was developed by Juan-Carlos Mani of Aspen Technology. This method estimates TB from the Riedel vapor pressure equation when one or two experimental temperature-vapor pressure data pairs are available. Such data is usually available for new specialty chemicals, especially for large molecules. This method can also be used to estimate TC and vapor pressure.

This method provides very accurate and reliable estimates of TB, TC and vapor pressure curve when some experimental vapor pressure data is available. It is very useful for complex compounds that decompose at temperatures below the normal boiling points.

The Riedel equation gives vapor pressure as a function of TB, TC and PC of the component. If one T-P pair is available, and TC and PC are known or estimated, the equation can be used to provide estimates of TB and vapor pressure. When two T-P pairs are available and PC is known or estimated, the equation can provide estimates of TB, TC, and vapor pressure.

尝试二

采用葡萄糖的分子式进行估算,实际葡萄糖的沸点约527°C

image-20220513003039449

尝试三

采用乙醇分子式,实际乙醇沸点约78°C

image-20220513003948909

总结

mani 的方法是精确而可靠的,但是需要实验数据

其余根据结构来预测性质的,多少会有点偏差,要根据分子结构中含有的官能团选择合适的预测模型

发表回复